Panasonic ideas for life

Twin type (8 terminals)

RoHS Directive compatibility information http://www.nais-e.com/

SUPER MINIATURE TWIN TYPE AUTOMOTIVE RELAY

FEATURES

- Small \& slim size

Twin type: $17.4(\mathrm{~L}) \times 14.0(\mathrm{~W}) \times 13.5(\mathrm{H}) \mathrm{mm}$.685(L)×.551(W)×.531(H)inch
Slim 1c type: 17.4(L) $\times 7.2(\mathrm{~W}) \times 13.5(\mathrm{H}) \mathrm{mm}$
$.685(\mathrm{~L}) \times .283(\mathrm{~W}) \times .531(\mathrm{H})$ inch

- Twin (1 Form C $\times 2$)

Forward/reverse motor control is possible with a single relay.

- Simple footprint enables ease of PC board layout
$※ 10$ terminals layout

o $=8$ terminals

SPECIFICATIONS

Contact

| Arrangement | 1 Form $\mathrm{C} \times 2$,
 1 Form C |
| :--- | :--- | :---: |
| | Ag alloy (Cadmium free) |

Coil

Nominal operating power	800 mW

\#1 This value can change due to the switching frequency, environmental conditions, and desired reliability level, therefore it is recommended to check this with the actual load.

Remarks

*1 At nominal switching capacity, operating frequency: 1s ON, 9s OFF
*2 N.O.: at 5 A (steady), 25 A (inrush)/N.C.: at 20 A (brake) 14 V DC, operating frequency: 0.5 s ON, 9.5 s OFF
*3 At 25A 14 V DC (Motor lock), operating frequency: 0.5 s ON, 9.5 s OFF
*4 Measurement at same location as "Initial breakdown voltage" section
*5 Detection current: 10 mA
*6 Excluding contact bounce time
*7 Half-wave pulse of sine wave: 11 ms ; detection: $10 \mu \mathrm{~s}$
*8 Half-wave pulse of sine wave: 6 ms
*9 Detection time: $10 \mu \mathrm{~s}$

Characteristics

Max. operating speed (at nominal switching capacity)			6 cpm
Initial insulation resistance*4			Min. $100 \mathrm{M} \Omega$ (at 500 V DC)
Initial breakdown voltage*5	Between o contacts		500 Vrms for 1 min.
	Between c and coil	tacts	500 Vrms for 1 min.
Operate time*6 (at nominal voltage) (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)			Max. 10ms (Initial)
Release time* ${ }^{*}$ (at nominal voltage) (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)			Max. 10ms (Initial)
Shock resistance ${ }^{\text {a }}$ F		tional*7	Min. $100 \mathrm{~m} / \mathrm{s}^{2}$ \{10G\}
		tructive*8	Min. 1,000 m/s² 100 G$\}$
Vibration resistance		onal*9	10 Hz to 100 Hz , Min. $44.1 \mathrm{~m} / \mathrm{s}^{2}$ \{4.5G\}
		tructive*10	10 Hz to 500 Hz , Min. $44.1 \mathrm{~m} / \mathrm{s}^{2}\{4.5 \mathrm{G}\}$
Conditions for operation, transport and storage ${ }^{{ }^{11}}$ (Not freezing and condensing at low temperature)		Ambient temp	$\begin{aligned} & -40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ & -40^{\circ} \mathrm{F} \text { to }+185^{\circ} \mathrm{F} \\ & \hline \end{aligned}$
		Humidity	5\% R.H. to 85\% R.H.
Mass			Approx. 8.0g . $280 z$ (Twin type) Approx. 4.0g . 140 oz (Slim 1c type)

${ }^{* 10}$ Time of vibration for each direction;

${ }^{* 11}$ Refer to Conditions for operation, transport and storage mentioned in AMBIENT ENVIRONMENT
Please inquire if you will be using the relay in a high temperature atmosphere $\left(110^{\circ} \mathrm{C} 230^{\circ} \mathrm{F}\right)$.

* If the relay is used continuously for long periods of time with coils on both sides in an energized condition, breakdown might occur due to abnormal heating depending on the carrying condition. Therefore, please inquire when using with a circuit that causes an energized condition on both sides simultaneously.

CT (ACT)

ORDERING INFORMATION

Standard packing; 1 Form C: Carton(tube package) 30pcs. Case 1,500pcs.
1 Form C $\times 2$: Carton(tube package) 30pcs. Case 900pcs.

TYPES AND COIL DATA (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)

Contact arrangement	Part No.	Nominal voltage, V DC	Pick-up voltage, V DC (Initial)	Drop-out voltage, V DC (Initial)	Coil resistance, Ω	Nominaloperating current, mA	Nominal operating power, mW	Usable voltage range, V DC
1 c	ACT112	12	Max. 7.2	Min. 1.0	$180 \pm 10 \%$	$66.7 \pm 10 \%$	800	10 to 16
$1 c \times 2$ $(8$ terminals type $)$	ACT212	12	Max. 7.2	Min. 1.0	$180 \pm 10 \%$	$66.7 \pm 10 \%$	800	10 to 16
$1 c \times 2$ $(10$ terminals type $)$	ACT512	12	Max. 7.2	Min. 1.0	$180 \pm 10 \%$	$66.7 \pm 10 \%$	800	10 to 16

* Other pick-up voltage types are also available. Please contact us for details.

DIMENSIONS

1. Twin type (8 terminals)

* Dimensions (thickness and width) of terminal specified in this catalog is measured before pre-soldering. Intervals between terminals is measured at A surface level.

2. Twin type (10 terminals)

[^0] Intervals between terminals is measured at A surface level.

PC board pattern (Bottom view)

Tolerance: $\pm 0.1 \pm .004$

Schematic (Bottom view)

* Dimensions (thickness and width) of terminal specified in this catalog is measured before pre-soldering. Intervals between terminals is measured at A surface level.

EXAMPLE OF CIRCUIT

Forward/reverse control circuits of DC motor for power windows

(IM) : Power window motor

REFERENCE DATA

1-(1). Coil temperature rise (at room temperature
Sample: ACT212, 3pcs.
Contact carrying current: 0A, 10A, 20A

3. Ambient temperature and operating voltage range

1-(2). Coil temperature rise (at $85^{\circ} \mathrm{C} 185^{\circ} \mathrm{F}$) Sample: ACT212, 3pcs.
Contact carrying current: 0A, 10A, 20A

4. Distribution of pick-up and drop-out voltage Sample: ACT212, 40pcs.

2. Max. switching capability (Resistive load, initial)

5. Distribution of operate and release time Sample: ACT212, 40pcs.

* Without diode

6 -(1). Electrical life test (Motor free)
Sample: ACT212, 3pcs.
Load: 5A steady, Inrush 25A, 14V DC
Brake current: 13A 14V DC,
Power window motor actual load (free condition)
Operating frequency: $(\mathrm{ON}: \mathrm{OFF}=0.5 \mathrm{~s}: 9.5 \mathrm{~s})$
Ambient temperature: Room temperature

Circuit:

Load current waveform
Inrush current: 25A, Steady current: 6A Brake current: 13A

6-(2). Electrical life test (Motor lock)
Sample: ACT212, 3pcs.
Load: 25A 14V DC
Switching frequency: (ON : OFF = 0.5s :9.5s)
Ambient temperature: Room temperature

Circuit:

Load current waveform

Change of pick-up and drop-out voltage

Change of contact resistance

Change of pick-up and drop-out voltage

Change of contact resistance

6-(3). Electrical life test (Motor lock)
Sample: ACT212, 3pcs.
Load: 20A 14V DC,
door lock motor actual load (Lock condition)
Switching frequency: ($O N: O F F=0.3 \mathrm{~s}: 19.7 \mathrm{~s}$)
Ambient temperature: Room temperature

Circuit:

Change of pick-up and drop-out voltage

Change of contact resistance

Load current waveform

For Cautions for Use, see Relay Technical Information.

[^0]: * Dimensions (thickness and width) of terminal specified in this catalog is measured before pre-soldering

